منابع مشابه
Robust Dequantized Compressive Sensing
We consider the reconstruction problem in compressed sensing in which the observations are recorded in a finite number of bits. They may thus contain quantization errors (from being rounded to the nearest representable value) and saturation errors (from being outside the range of representable values). Our formulation has an objective of weighted l2-l1 type, along with constraints that account ...
متن کاملRobust Facial Expression Recognition via Compressive Sensing
Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated o...
متن کاملCompressive Sensing Based Robust Signal Sampling
Signal processing methods have been changed substantially over the last several decades. Traditional sampling theorem of Shannon-Nyquist states that the sampling rate must be at least twice the maximum frequency presented in the signal; however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the band...
متن کاملRobust compressive sensing of sparse signals: a review
Compressive sensing generally relies on the l2 norm for data fidelity, whereas in many applications robust estimators are needed. Among the scenarios in which robust performance is required, applications where the sampling process is performed in the presence of impulsive noise, i.e. measurements are corrupted by outliers, are of particular importance. This article overviews robust nonlinear re...
متن کاملMaximum Correntropy Adaptive Filtering Approach for Robust Compressive Sensing Reconstruction
Robust compressive sensing(CS) reconstruction has become an attractive research topic in recent years. Robust CS aims to reconstruct the sparse signals under non-Gaussian(i.e. heavy tailed) noises where traditional CS reconstruction algorithms may perform very poorly due to utilizing l2 norm of the residual vector in optimization. Most of existing robust CS reconstruction algorithms are based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2014
ISSN: 1063-5203
DOI: 10.1016/j.acha.2013.12.006